Selective histamine piezoelectric chemosensor using a recognition film of the molecularly imprinted polymer of bis(bithiophene) derivatives.

نویسندگان

  • Agnieszka Pietrzyk
  • Subramanian Suriyanarayanan
  • Wlodzimierz Kutner
  • Raghu Chitta
  • Francis D'Souza
چکیده

A histamine piezoelectric (acoustic) sensor using a molecularly imprinted polymer (MIP) film has been devised and tested. The sensor comprises an electrodeposited MIP film as the recognition element and a 10 MHz AT-cut shear-thickness-mode bulk-acoustic-wave quartz crystal resonator with Pt film electrodes as the signal transducer. Preparation of the sensing film involved two consecutive electrochemical polymerizations, performed under cyclic voltammetric conditions, with the use of a supporting electrolyte of 0.1 M tetra-n-butylammonium perchlorate in acetonitrile. First, a poly(bithiophene) barrier film was deposited by electropolymerization on the Pt/quartz resonator to prevent histamine electro-oxidation and avoid possible contamination of the Pt electrode surface. Next, the histamine-templated MIP film was deposited by electropolymerization on top of this barrier film. For that purpose, two functional monomers of bis(bithiophene) derivatives, i.e., one bearing the 18-crown-6 and the other dioxoborinane substituent, were copolymerized in the presence of the histamine template. The consecutive growth of both these overlaid films was monitored with an electrochemical quartz crystal microbalance (EQCM). Subsequently, the histamine was extracted from MIP with 0.01 M NaOH for 12 h. The UV-vis and X-ray photoelectron spectroscopic measurements confirmed the completeness of the removal of the histamine template from the MIP film. The analytical performance of the chemosensor was assessed under flow injection analysis (FIA) conditions using the carrier 0.5 M HEPES buffer (pH = 7.5) solution and the piezoelectric microgravimetry detection at QCM. The negative peaks of resonant frequency linearly decreased with the increase of the histamine concentration in the range 10-100 mM for 150 microL/min flow rate, and 100 microL volume of the injected sample. The sensitivity of the chemosensor (0.33 Hz/mM) was more than twice as that of the chemosensor without the poly(bithiophene) barrier film (0.15 Hz/mM). The chemosensor performance was superior for selective histamine recognition if the poly(bithiophene) barrier film thickness exceeded 200 nm. The chemosensor discriminated histamine from functionally or structurally similar compounds, such as dopamine, tryptamine, and imidazole. Stability constants of the affinity complexes of MIP and analyte or the interfering agent were determined from kinetic studies. For the MIP-histamine complex, the stability constant thus evaluated was equal to 57.0 M(-1) being much higher than those for the MIP-tryptamine and MIP-dopamine complexes determined to be 10.7, and 6.4 M(-1), respectively. The concentration limit of detection was as low as 5 nM histamine if the carrier solution flow rate was as low as 35 microL/min and the injection sample volume as large as 1 mL.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fabrication of a Selective and Sensitive Electrochemical Sensor Modified with Magnetic Molecularly Imprinted Polymer for Amoxicillin

A modified electrochemical sensor for the determination of amoxicillin (AMX) was reported in this paper. The magnetic molecularly imprinted polymer (MMIP) were suspended in AMX solution and then collected on the surface of a magnetic carbon paste electrode (CPE) via a permanent magnet, situated within the carbon paste electrode and then the voltammetry signals were recorded. It was confirmed th...

متن کامل

Selective Extraction and Determination of Di(2-ethylhexyl) Phthalate in Aqueous Solution by HPLC Coupled with Molecularly Imprinted Solid-phase Extraction

Surface Molecularly Imprinted Polymer (SMIP) for selective adsorption of di(2-ethylhexyl) phthalate(DEHP) was prepared on the surface of silica gel which was modified by aminopropyltriethoxysilane and acryloyl chloride in a two-step method. The prepared SMIP was used to prepare Molecularly Imprinted Solid-Phase Extraction (MISPE) column for selective extraction of DEHP from aqueous solution...

متن کامل

Separation of ‎STIGMA STEROL using magnetic molecularly imprinted nanopolymer fabricated by sol-gel method

Background & Aims: Magnetically molecularly imprinted polymers (MMIPs) are assumed as kind of sorbent polymers ‎which can separate or determine bioactive compounds from environment fast and specifically.  ‎Magnetic properties, stability at various conditions (temperature , ionic strength and pH) and selective ‎function are among the advantages of these polymers in determin...

متن کامل

In Situ Voltammetric Determination of Promethazine on Carbon Paste Electrode Modified with Nano-sized Molecularly Imprinted Polymer

A precise and simple in-situ voltammetric measurement of promethazine, based on the nano sized molecularly imprinted polymer (nano-MIP) was introduced. The nano-MIP was synthesized utilizing vinyl benzene and Divinylbenzene as the functional monomer and cross-linker respectively, and via the micro-emulsion polymerization method in silicon oil. The MIP particles were then embedded in a carbon pa...

متن کامل

Computational Aided-Molecular Imprinted Polymer Design for Solid Phase Extraction of Metaproterenol from Plasma and Determination by Voltammetry Using Modified Carbon Nanotube Electrode

A molecular imprinted polymer (MIP) was computationally designed and synthesized for the selective extraction of metaproterenol (MTP), from human plasma. In this regards semi empirical MP3 and mechanical quantum (DFT) calculations were used to find a suitable functional monomers. On the basis of computational and experimental results, acrylic acid (AA) and DMSO:MeOH (90:10 %V/V) were found to b...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Analytical chemistry

دوره 81 7  شماره 

صفحات  -

تاریخ انتشار 2009